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Abstract An empirical model relating monthly hail occurrence to the large-scale environment has been
developed and tested for the United States (U.S.). Monthly hail occurrence for each 1�31� grid box is
defined as the number of hail events that occur there during a month; a hail event consists of a 3 h period
with at least one report of hail larger than 1 in. The model is derived using climatological annual cycle data
only. Environmental variables are taken from the North American Regional Reanalysis (NARR; 1979–2012).
The model includes four environmental variables convective precipitation, convective available potential
energy, storm relative helicity, and mean surface to 90 hPa specific humidity. The model differs in its choice
of variables and their relative weighting from existing severe weather indices. The model realistically
matches the annual cycle of hail occurrence both regionally and for the contiguous U.S. (CONUS). The mod-
eled spatial distribution is also consistent with the observed hail climatology. However, the westward shift
of maximum hail frequency during the summer months is delayed in the model relative to observations,
and the model has a lower frequency of hail just east of the Rocky Mountains compared to observations.
Year-to-year variability provides an independent test of the model. On monthly and annual time scales, the
model reproduces observed hail frequencies. Overall model trends are small compared to observed
changes, suggesting that further analysis is necessary to differentiate between physical and nonphysical
trends. The empirical hail model provides a new tool for exploration of connections between large-scale cli-
mate and severe weather.

1. Introduction

Hail is responsible for significant damage to agricultural resources, vehicles, and buildings. While hail dam-
age in the United States (U.S.) is less extreme than that due to tornadoes, hail affects larger areas on a more
regular basis, resulting in U.S. annual losses of near 1 billion U.S. dollars of the estimated 1.6 billion annual
total for severe thunderstorms [Changnon, 1999, 2008; Munich, 2013]. The U.S. National Climatic Data Cen-
ter’s (NCDC) Storm Data observational hail record is the most comprehensive publicly available data set.
However, the Storm Data hail reports have a number of deficiencies [Schaefer and Edwards, 1999; Doswell
et al., 2005; Doswell, 2007]. For example, only maximum hail size is reported, and that value may be quan-
tized or distorted by association to reference objects (e.g., golf balls). Recent high-resolution hail observa-
tions from field campaigns [e.g., Ortega et al., 2009; Blair et al., 2014] suggest that larger hail sizes are more
common than would be expected from Storm Data hail reports. Another characteristic of the Storm Data
hail reports are positive trends in the frequency of hail in excess of 2 in. in diameter (hereafter giant hail),
especially over the southeast of the U.S. [Schaefer et al., 2004]. These trends skew heavily toward areas of
higher population density, and where National Weather Service forecast offices actively seek out hail reports
for the warning verification process [Hales, 1993; Wyatt and Witt, 1997; Davis and LaDue, 2004; Schaefer
et al., 2004; Trapp et al., 2006; Cintineo et al., 2012]. These factors limit the direct analysis of temporal and
spatial variability in the Storm Data hail report data for climate studies.

An alternative approach is to consider the environments that are favorable to hail occurrence [Brooks et al.,
2003; Brooks, 2009]. The majority of hailstones 1 in. or larger (hereafter large hailstones) are associated with
organized thunderstorms [Kelly et al., 1985], and nearly all instances of giant hail are associated with super-
cell thunderstorms, though such stones may only be a small fraction of the total hail from a storm
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[Changnon et al., 2009]. Hail
occurrence has previously
been related to the thermody-
namic potential of the severe
thunderstorm environment
[Stumpf et al., 2004; Giaiotti
et al., 2003; Groenemeijer and
Van Delden, 2007; Kunz et al.,
2009; Grams et al., 2012;
Thompson et al., 2012], particu-
larly the steepness of midlevel
lapse rates, suspension of ice
nuclei in the optimum hail
growth region, as well as mois-
ture availability. While thermo-
dynamic sources of energy are
essential to promote the
strong updrafts that support
hail, shear enhancement of the
vertical pressure gradient pro-
vides another important contri-
bution [Edwards and
Thompson, 1998; Doswell and

Markowski, 2004; Jewell and Brimelow, 2009; Grams et al., 2012; Manzato, 2012]. The interaction between
thermodynamic potential and vertical wind shear is quantified, for example, in the Significant Hail Parame-
ter (SHIP; details of the formula for SHIP can be found at http://www.spc.noaa.gov/exper/mesoanalysis/
help/help_sigh.html). SHIP is a function of convective available potential energy (CAPE), the mixing ratio of
a parcel, environmental midlevel lapse rate, 500 hPa temperature, and 0–6 km vertical wind shear (S06) and
is a measure of the favorability of environmental conditions for giant hail. In comparison, the significant
severe parameter (SSP) of Brooks et al. [2003] attempts to capture the occurrence of giant hail as well as
damaging winds and strong tornadoes based on the weighted product of CAPE and S06. These severe
weather indices are widely applied to sounding or subdaily model data and used in short-range weather
forecasting.

The greater dependence of SHIP on the thermodynamics of the profile compared to the SSP illustrates
that complex interactions on the microphysical scale, moisture loading, as well as the structure of the ver-
tical temperature profile can influence the potential for large hail in ways that are different than other
forms of severe weather. Consequently, measures of the favorability of the environment for tornadoes
[Tippett et al., 2012, 2014] and significant severe thunderstorms [Brooks et al., 2003; Gensini and Ashley,
2011] may be suboptimal for estimating hail occurrence. As illustrated by Brooks [2013], tornadoes, hail,
and damaging wind favor different parts of the environmental phase space of thermodynamic and kine-
matic conditions.

Spatial maps over the contiguous U.S. (CONUS) of the average number of tornado and large hail reports per
year for the period 1979–2012 are shown in Figure 1. Relative to the tornado climatology, hail is found fur-
ther west, reflecting the occurrence of hail-producing storms along the dryline in the high plains into the
Texas panhandle. Hail is also less frequently found over the southeast of the CONUS where lapse rates are
generally lower [Cintineo et al., 2012]. In addition, hail is reported more often in the U.S. than tornadoes,
with an average of 4191 large hail events per year compared to 1007 tornado reports per year for the
period 1979–2012. While most assessments of hail risk for the United States have relied mainly on data-
bases of hail reports [Doswell et al., 2005; Changnon et al., 2009], more recently remote sensing approaches
based on radar reflectivity or satellite cloud top temperatures have been used [Cintineo et al., 2012; Cecil
and Blankenship, 2012]. However, changing technology in radar output for the U.S. and satellites limit both
of these methods to about the last decade. The satellite approach, while global in coverage, tends to over-
estimate hail occurrence over the tropics where large hail is rarely observed [Knight and Knight, 2001; Cecil
and Blankenship, 2012]. The radar-derived climatology in contrast is limited by spatial extent to available
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Figure 1. (a) Annual mean number of gridded (1�31�) reports of hail equal to or greater
than 1 in. 1979–2012, and (b) annual mean number of gridded (1�31�) reports of tornadoes
greater than F0 intensity for the same period.
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radar sites, temporal period due to changing technology, and shows poor size discrimination for hail larger
than 4.9 cm [Cintineo et al., 2012].

Attempts to relate hail occurrence to the large-scale environment have generally focused on small regions
utilizing synoptic composites [e.g., Cao, 2008; Kapsch et al., 2012] or station proximity analyses [e.g., Edwards
and Thompson, 1998]. More recently, empirical hail models have been applied to estimate frequency or size
from the environmental conditions [e.g., Jewell and Brimelow, 2009; Sanderson et al., 2014]. A small number
of studies have investigated both univariate and multivariate, as well as linear and nonlinear discriminants
for hail [e.g., Manzato, 2012; Eccel et al., 2012; Manzato, 2013]. These have mainly focused on atmospheric
variables using limited data samples over small regions, or covariates such as used by Brooks et al. [2003].

The aim of this study is to construct a model to predict hail occurrence from the large-scale environmental
conditions. While our use of data over a large region (CONUS) and long period (34 years) is distinguishing,
the main difference of the work here is our choice to use monthly averages, and to a lesser extent, the
choice to use spatial scales on the order of 100 km. The motivation for this choice is our interest in the mod-
ulation of severe weather occurrence by climate variability on both seasonal and longer time scales. There-
fore, the specific goal here is to develop a model to predict monthly hail occurrence from monthly
averaged environmental variables. The obvious difficulty with this goal is that hail occurrence is mostly
directly related to the Instantaneous local values of the environment, not monthly averages.

We develop the hail occurrence model using only annual cycle data. In doing so, we are testing the hypothesis
that the monthly hail occurrence climatology is related to the climatological distribution of monthly mean envi-
ronments. Since we develop the model in a regression framework, we can test this hypothesis by testing the sig-
nificance of regression coefficients, as well as by evaluating the degree to which the model is able to reproduce
spatial and temporal features of the hail climatology. Having developed the model using only annual cycle data,
the ability of the model to match observed interannual variability is an independent validation of the model
and a test of the hypothesis that variations in monthly environments are reflected in hail occurrence.

This paper is structured as follows: section 2 describes the hail observations and the North American
Regional Reanalysis (NARR) used for environmental data. Section 3 details the development of the statistical
model relating hail occurrence to the large-scale environment and compares it to other potential models.
Sections 4 and 5 explore the seasonal, interannual, and spatial characteristics of the model on both a
CONUS-wide and regional basis. Finally, in section 6, the limitations of the model and our approach are dis-
cussed, and the future potential applications of this index are outlined.

2. Data

2.1. NCDC Storm Data: Hail
A 1�31� U.S.-wide gridded data set of monthly hail occurrence was constructed based on the NCDC storm
data for the period 1979–2012 [Schaefer and Edwards, 1999]. We define the monthly hail occurrence for
each grid box and month as the number of three-hourly periods (0Z–3Z, 3Z–6Z, etc.) with at least one
report of 1 in. or larger hail. We chose this definition of a hail event, with its binning in time and space, to
reduce the influence of nonmeteorological factors such as population and road distributions. For example,
Figure 2a shows that reports of large hail near Amarillo, Texas, have distinct small-scale spatial structure
that is more likely related to road networks and population than to meteorological variations. The clear
imprint of the road network on hail reports suggests that simple corrections for report biases using popula-
tion density alone are likely to be of limited effectiveness. Despite the spatial binning, a substantial east-to-
west decrease in monthly hail occurrence remains (Figure 2b), coinciding with the dropoff in population
and road network density. The 1 in. threshold also serves to remove some sampling and observer issues
that result from quantized biases toward the minimum threshold which was 0.75 in. for the period 1979–
2010 before its elevation to 1 in. in 2010 [Schaefer et al., 2004]. Finally, only the monthly annual cycle of hail
occurrence (a single value for each of the 12 calendar months at each location) is used to develop the
model, thereby removing trends from the model development procedure.

2.2. North American Regional Reanalysis
The North American Regional Reanalysis (NARR) [Mesinger et al., 2006] provides environmental data. The
reanalysis has a horizontal resolution of 32 km. For this application, the data were bilinearly interpolated to
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the same 1�31� grid over the
CONUS (25�N–50�N, 130�W–
60�W) used for the hail observa-
tions. Twenty monthly mean
parameters were chosen for
potential inclusion in the model.
These included thermodynamic
and kinematic quantities, parame-
ters commonly used for hail
detection in an operational set-
ting, as well as other parameters
potentially related to the seasonal
cycle (Table 1). We take the loga-
rithm of some of the variables,
motivated by the findings of
Brooks et al. [2003] and Brooks
[2013]. In addition, parameters
relating to observational charac-
teristics including 1�31� gridded
elevation and population were
also considered.

NARR wind fields and calculated
measures of vertical wind shear
have been shown to be realistic,
particularly outside of the plane-
tary boundary layer where
subgrid-scale influences become
more important [Gensini et al.,
2014]. NARR thermodynamic
quantities in contrast have been
shown to have several limitations.
The deficiencies in NARR thermo-
dynamics partly relate to the acti-
vation of shallow convection
within the Eta model convection
scheme used to produce the
reanalysis, which results in large
amounts of drying between 900
and 700 hPa and strongly influen-
ces the development of both
instability and convective inhibi-
tion [Baldwin et al., 2002; Gensini
et al., 2014]. However, for parame-
ters such as convective precipita-
tion, NARR could be potentially
advantageous, since the assimila-

tion of precipitation as latent heat profiles can assist in damping activity in the model’s convective scheme
[Mesinger et al., 2006; Bukovsky and Karoly, 2007].

3. Model Development

Several approaches have been used previously to fit statistical relationships between observed severe
weather and environment [e.g., Brooks et al., 2003; Eccel et al., 2012; Manzato, 2013; Elsner and Widen, 2014].
Here we use Poisson regression, which assumes a log linear relationship between the environmental
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Figure 2. (a) Point reports of hail over the period 1979–2012 for the Texas panhandle
and surrounding areas bounded by 34�N–38�N and 104�W–100�W from NCDC hail
observations, and (b) total number of gridded (1

�
31
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) three-hourly hail events (�1 in.)

for the same period and domain.
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parameters and the number of hail
events. The same approach has previ-
ously been applied to tropical cyclo-
nes [Tippett et al., 2011] and
tornadoes [Tippett et al., 2012]. An off-
set term accounts for the different
area of each grid box and the number
of years in the climatology. The Pois-
son distribution assumption is rele-
vant in the maximum-likelihood
estimation of the regression coeffi-
cients, and to the extent that this dis-
tributional form is not appropriate,
there is potential for more accurate
estimates of the regression coeffi-
cients. We do not use the statistics or
percentiles of the Poisson distribution
and avoid any assumptions on the
equality of conditional mean and var-
iance. Overdispersion results if the
variance of the data exceeds the con-
ditional mean [Elsner and Widen,
2014]. To address the sensitivity of
the results here to choice of distribu-
tion, negative binomial regression

was also tested. The negative binomial regression results in similar regression coefficient estimates, but
increased sum-squared error.

One of the dangers of fitting any regression is overfitting, where an excessive number of predictors results in
poor performance in independent data. The regression fitting procedure here uses the climatological annual
cycle of monthly hail occurrence (12 values) at each U.S. grid point (860 grid points) for a total of 10,320 sam-
ples with the corresponding climatological annual cycle values of the parameters listed in Table 1; the regres-
sion coefficients do not depend on location or month. The risk of overfitting is reduced since the (nominal)
sample size greatly exceeds the number of predictors. Nonetheless, a model with as few predictors as possible
is desirable. We use cross validation to measure performance on independent data, and the number of
parameters is increased until the addition of further parameters results in minimal cross-validated gain. The
deviance is a measure of the goodness of fit and for a Poisson regression is calculated as:

Deviance52
Xn

i51

yi ln ðyi=liÞ2ðyi2liÞ; (1)

where y is the number of hail events, n is the number of observations, and l is the fitted hail model. For the
fitting procedure, the second term of deviance reduces to zero by design as the model captures the aver-
age. For the out-of-sample calculations in the cross-validation and interannual data, this term is nonzero
and thus contributes to the deviance. The mean and standard deviation of the deviance is computed using
10 iterations of 10-fold cross validation. The observations used to compute the cross-validated deviance are
separate from those used to fit the index. Figure 3 shows that after four predictors are included in the
model, additional parameters do not substantially improve the fit. We obtain the coefficients and parame-
ters for the hail model as:

lHail 5 exp ½210:1810:97 log ðcPrcpÞ11:13log ðSRHÞ

11:00log ðMLCAPEÞ20:31Qmean1log Dx Dy Tcos /ð Þ�;
(2)

where the final term is the offset, with / as the latitude, Dx and Dy are the longitude and latitude spacings
in degrees, respectively, and T is the number of years. Table 2 gives the uncertainty (plus/minus two stand-
ard deviations) of the regression coefficients estimates as calculated during the cross validation. The

Table 1. List of Parameters Chosen for Relationship Selectiona

Input Parameters Abbreviation Units

0–3 km storm relative helicity SRH m2 s22

500 hPa temperature T500 K
700–500 hPa lapse rate LAPSE �C km21

180 hPa MLCAPE MLCAPE J kg21

180 hPa MLCIN MLCIN J kg21

Convective precipitation cPrcp kg m22

Surface-based CAPE SBCAPE J kg21

Surface-based CIN SBCIN J kg21

Geop. height of zero isotherm FZL m
Most unstable lifted index LI K
0–1 km bulk wind shear S01 m s21

0–6 km bulk wind shear S06 m s21

0–8 km bulk wind shear S08 m s21

6 km to tropopause wind shear S6TP m s21

Relative height of LCL rLCL hPa
Mixed-layer LCL MLLCL hPa
Surface equivalent pot. temp. ThetaE K
Mean RH surf. to zero isotherm MeanRHZero %
Mean 2 m to 90 hPa specific humidity Qmean g kg21

Soil moisture in 1 m layer SoilM01 kg m22

aItalics denote modeled parameters, while underlining indicates the logarithm
of a parameter was used. LAPSE, S01, S06, S08, and S6TP were all calculated
using the respective temperature or wind fields at given layers. LCL height was
calculated following the approach of Craven et al. [2002] for a mixed-layer parcel
and scaled using relative height from ground in hPa. Moisture means Mean-
RHZero and Qmean were calculated using relative and specific humidity from the
surface (2 m) to the 0� isotherm and 90 hPa above the surface, respectively.
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coefficients are highly signifi-
cant in all cases, supporting
our hypothesis that the
monthly hail occurrence clima-
tology is related to the climato-
logical distribution of monthly
mean environments. The tor-
nado index by comparison is
[Tippett et al., 2012, 2014]:

lTornado5exp ½210:59

11:36 log ðcPrcpÞ11:89 log ðSRHÞ
1log Dx Dy Tcos /ð Þ�:

(3)

The hail model is substantially
different from the tornado
index, reflecting the different

spatial distribution and environmental conditions that precede the respective thunderstorm phenomena.
Figure 3 indicates that the deviance from the hail data is reduced significantly by addition of the third and
fourth parameters. This was not the case for the tornado data, where using more than two parameters did
not improve the index fit. The index for tornadoes, in comparison to the four-parameter hail model, is more
sensitive to variations in SRH. This difference is expected, as tornadoes are more reliant than hail on the
presence of low-level environmental wind shear [Brooks et al., 2003]. The importance of cPrcp is also
reduced in the four-parameter index hail model relative to the tornado index. Comparing the hail index to
the potential three-parameter fit, the dependence on SRH decreases by almost a half (Table 2). Compensat-
ing for this change, the dependence on MLCAPE doubles, while the coefficient for cPrcp also increases by a
third. As we introduce addition components to the model, the fitting procedure varies the respective coeffi-
cients to maximize the likelihood. The colinearity of the respective components means that introducing
parameters with common characteristics (moisture) results in the coefficients being varied to maximize the
fit. The introduction of the negative sign fourth parameter Qmean allows each of the other coefficients to be
adjusted upward, thereby improving the fit. As shown by the changes to the deviance (Figure 3), there is lit-
tle additional variance explained by the introduction of additional parameters, and thus any adjustment to
the coefficients only results in a trivial improvement in model performance.

The log linear assumption was checked by performing a bootstrapped fitting procedure between the tenth
and ninetieth percentiles of the values for each environment variable and ensuring it displayed a logarith-
mic relationship as in Tippett et al. [2014]. This assumption was found to be appropriate except for small val-
ues of Qmean, over which range the regression coefficients were positive (not shown) in contrast to the
negative value in the index. These small values of Qmean only occur for a few grid points in the northern
CONUS during January, February, and March, where moisture limitation may be important.

To examine the relative contributions of the variables in the model, we show maps in Figure 4 of the annual
number of hail events as the number of variables in the model increases from one to four. cPrcp is the first
parameter selected by the forward selection procedure, which is unsurprising given its appearance in the
tornado index and its prior utility for characterizing convective initiation [Trapp et al., 2009]. Physically, cPrcp
is a consequence of both convective initiation by the model’s convective parameterization scheme and the
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Figure 3. Deviance of model as function of the number of environmental parameters. The
central point and error bars indicate the mean and standard deviation of deviance calcu-
lated using 10 iterations of 10-fold cross validation.

Table 2. Hail Model Coefficients for Increasing Number of Parameters and Plus/Minus Their Two Standard Error Uncertainty as
Estimated in the Cross-Validation Procedure

Coefficients Intercept cPrcp SRH MLCAPE Qmean

One parameter 22.33 6 0.025 1.10 6 0.014
Two parameter 210.07 6 0.133 1.48 6 0.030 1.86 6 0.015
Three parameter 214.88 6 0.168 0.72 6 0.027 2.03 6 0.013 0.51 6 0.023
Four parameter 210.33 6 0.177 0.99 6 0.030 1.14 6 0.016 1.00 6 0.023 20.31 6 0.007
Tornado 210.59 6 0.179 1.36 6 0.041 1.89 6 0.019
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thermodynamic instability
present. Precipitation then
occurs until the instability is
resolved by the parameteriza-
tion scheme, with the magni-
tude of the resultant
convective rainfall constrained
by assimilation of precipitation
data as latent heat profiles in
the NARR reanalysis. However,
the hail model with cPrcp
alone does not produce a use-
ful distribution for hail occur-
rence, with peak values
confined to the Gulf of Mexico
coast and close to the source
of moisture (Figure 4a). The
two-parameter model, like that
for tornadoes, includes SRH,
although with stronger weight-
ing and is shifted over the
plains relative to the tornado
climatology but with similar
coefficients (Table 2 and Figure
4c). Again, the inclusion of SRH
is physically reasonable, reflect-
ing the potential for organized
thunderstorms and rotating
updrafts characteristic of
supercells, the producers of a
significant fraction of large hail.
Adding a third parameter
results in inclusion of a direct
measure of the potential
updraft strength, MLCAPE.
Unlike cPrcp, which describes a
model response to available
energy and varies depending
on the atmospheric moisture
content and other factors,
MLCAPE describes the poten-
tial energy available to
updrafts over a given month in
the climatological cycle. Since

this parameter was calculated with a mixed-layer parcel depth of 180 hPa, the deep parcel is also likely
a reflection of the convective inhibition present within the atmosphere, perhaps explaining the west-
ward shift of the climatological maximum in the index in addition to the expected thermodynamic rela-
tionship. The three-parameter model produces a greater hail frequency over the southern half of Texas
compared to observations, but is improved compared to the two-parameter model. We suspect that
this is a result of convective inhibition being handled poorly by many reanalysis products including
NARR as seen for combinations of CAPE and S06 in this area [Brooks et al., 2003; Gensini and Ashley,
2011]. The deviance is further reduced by the addition of a fourth parameter, Qmean (Figure 4d). On a
diurnal scale, this parameter is representative of moisture in the boundary layer, and the potential for
loading of precipitable water within the updrafts of storms. However, these characteristics are unlikely
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Figure 4. Optimal deviance fitted Poisson regression indices for large hail events with
increasing number of environmental parameters for the period 1979–2012. (a) One parame-
ter index (cPrcp), (b) two parameter index (cPrcp, SRH), (c) three parameter index (cPrcp,
SRH, MLCAPE), and (d) four parameter index (cPrcp, SRH, MLCAPE, Qmean). Units are mean
annual number of three-hourly periods with hail events greater than 1 in.
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to be represented in monthly
averages. The spatial distribu-
tion of the four-parameter
model produces a more accu-
rate representation of hail
events in the Texas panhan-
dle, eastern New Mexico, and
eastern Colorado.

These coefficient changes,
together with the addition of
Qmean, improve the spatial dis-
tribution over the problematic
southern Texas and coastal
areas when compared to the
three-parameter hail model
(Figures 5a and 5b). Qmean

however does not improve
errors near the Front Range of
the Rocky Mountains where
additional moisture should be
favorable to the development
of hail, prompting further scru-
tiny. The correlation of Qmean

with the hail model and with
the monthly hail occurrence
data is positive and significant,
which is physically sensible. It
is therefore surprising that the
coefficient of Qmean in the
index is negative (Table 2). This
behavior can be understood by
noting that Qmean is well corre-
lated with MLCAPE and cPrcp,
implying that the predictors
exhibit colinearity. Thus, the
sign of the coefficient of Qmean

must take into account the
relation of Qmean with hail
occurrence and as well as its
relation with the other predic-
tors. Here there is a negative
relation between Qmean and
the variability unexplained by

the first three predictors, and this relation results in a negative coefficient for Qmean in the optimum four-
parameter fit.

Two other potential indices are presented for comparison (Figures 5c and 5d). The first is the tornado index
[Tippett et al., 2012, 2014]. This comparison illustrates the novelty of the hail model, showing the clear differ-
ences between hail and tornado environmental relationships. While the tornado index is characterized by
the double-lobe structure of the so-called Tornado and Dixie alleys, hail occurrence is more confined to the
central Great Plains. This presumably reflects the greater instability and steep midlevel lapse rates in this
region, downstream of the high terrain, whereas by the time such air has moved over the east, it has typi-
cally been mixed by repeated days of convection, reducing these lapse rates and instability [Cintineo et al.,
2012]. We also compare the best four-parameter model to a version that does not include convective
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Figure 5. (a) Difference between the mean annual number of three-hourly periods with hail
events for the four-parameter hail model and observed large hail events 1979–2012. (b) As
for Figure 5a, except difference between mean annual number of the three-parameter hail
index events and observed large hail events. (c) Mean annual number of three-hourly peri-
ods with tornado events from the tornado index calculated using equation (3) for the same
period. (d) Mean annual number of large hail events of the ‘‘next best’’ index without cPrcp
included.
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precipitation as one of the con-
stituent parameters (Figure
5d). When ranked by mini-
mized deviance, this corre-
sponds to the tenth best four-
parameter model. The mois-
ture quantity Qmean is found in
all 10 of these indices, along
with a range of shear and CAPE
representations. The model
index with no cPrcp includes:
MLCAPE, S06, the relative
height of the lifted condensa-
tion level (rLCL), and Qmean.
However, like many of the
CAPE-shear product indices
that have been applied for six-
hourly data [e.g., Brooks et al.,
2003; Gensini and Ashley, 2011],

this model suffers from overly high values in the southern parts of Texas where climatological CAPE is high
(thereby generating high model values), but convection is rarely initiated. Including the NARR cPrcp in our
model reduces this problem, though does not remove it entirely (Figure 5a).

4. Model Climatology

4.1. Annual Cycle
The model seasonal cycle is similar to that of observations, with lower year-to-year variability and some defi-
ciencies in the mean of the seasonal cycle (Figure 6). The main difference is a small underestimation of the
occurrence of hail in the peak months of May to July, and a small overestimation for the autumnal months
September to November. These biases in the mean reflect two limitations of the model; in the western high
plains of Colorado, the occurrence of hail over this area is underestimated by the model. A potential expla-
nation is the reduced moisture in the NARR reanalysis compared to observations over Colorado which
impacts the values of Qmean, cPrcp, and MLCAPE [Gensini et al., 2014]. The second problem arises over the
southeast of the continent, where the model is also biased downward. The extent to which this is a real bias
as compared to an observational flaw arising from the verification process has been questioned [Cintineo
et al., 2012]. The variability of the climatologically fitted model applied to interannually varying environment
is somewhat smaller than observed for April, May, and June, although a large portion of the observations
falls within the expected range. While the model does have limitations in its handling of the variability, it
shows a capability to simulate the extreme outliers of the climatology outside the reduced variability (e.g.,
the outlying value in April).

Moving from continental scale to regional analysis, the model performs well in estimating the timing of the
seasonal peak for all of the nine NOAA climate regions [Karl and Koss, 1984], except over the northwest
where there are relatively few hail reports (Figure 7). Three different behaviors can be seen in the difference
between the model and observations over the respective regions: central plains (south, central, and plains),
east (southeast and northeast), and west (upper midwest and southwest). In the central plains, both peak
magnitude and the timing of the seasonal cycle are well replicated (Figures 7a, 7d, and 7f). Given that a
large fraction of CONUS hail occurrence is found in these regions, it is important that the model captures
the seasonal cycle well, though the spread of variability of the model is reduced for both the Central and
Plains regions. Despite this decreased spread in interannual variability, we will see later that interannual cor-
relations of frequency for these regions on a monthly scale show appreciable skill during the peak months
(Table 3).

Over the east of the CONUS, both the temporal structure and the summer peak of the seasonal cycle is
replicated. However, the magnitude of the model is much lower than the observed frequencies (Figures 7b
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Figure 6. Seasonal variability of the hail model for total monthly hail events over the CONUS
as compared to observed hail events 1979–2012. Lines are mean index (gray) and observa-
tions (black) seasonal cycle, and whiskers reflect 2.7r of the distribution (99.3%). Dots show
outlying years, which are outside the 2.7r range.
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Figure 7. As for Figure 6, except seasonal cycle of the index and observed hail events over the NOAA climate regions for (a) south, (b) southeast, (c) northeast, (d) central, (e) upper mid-
west, (f) plains, (g) southwest, and (h) northwest. No outliers are shown.
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and 7c). These underestimates
are potentially related to the
buoyancy-driven environments
in which these storms occur, or
possible biases in the reporting
arising from warning verifica-
tion policy [Cintineo et al.,
2012]. Despite these deficien-
cies, we will see later that sig-
nificant correlations are found
for all but October and Decem-
ber in the northeast, with the
highest values during spring
and the early summer (Table
4). In both the upper midwest
and southwest (Figures 7e and
7g), the model simulates the
peak, but does not identify the
decreasing frequency of hail in
the late summer and early fall.
As we show later, this defi-
ciency is reflected in poor
interannual correlations
between observations and the

model for all months barring October in these regions. Combining both the second and third characteristics
reveals that the biases in the CONUS mean annual frequency arise from regions outside of the peak climato-
logical frequency in the center of the CONUS and suggest that regional examination of appropriate fits may
be necessary to form a more precise climatology.

4.2. Annual Climatology
Despite the binning procedures used, the hail events climatology show what are potentially biases toward
urban centers and frequently traversed road networks as described in section 2. The highest mean annual
frequencies are found through northern Texas through Oklahoma and Kansas into southern Nebraska, with
peak values between 10 and 11 hail events per year (Figure 8b). A northwestward extension occurs along
the margins of the high terrain, reflecting the high frequency of hail at this altitude, while extension east is
through the Missouri, Mississippi, and Ohio valleys in one belt, and a second south of the Ozark Plateau and
the Appalachian mountains through the south to the Carolinas. In contrast, the maximum in the model cli-
matology is more confined to the plains, extending from the Rio Grande valley on the Mexican border
northward into southern Nebraska (Figure 8a). The spatial peak is found over northwestern and central
Texas, extending through central Oklahoma and into southern Kansas, east as far as the Arkansas border
and west to New Mexico. Despite the systematic bias in frequency when compared to the observed clima-
tological frequency of hail events (Figure 5), the model has an RMSE of 1.27 hail events annually, corre-
sponding to less than 15% of the peak magnitude of 10 events and a pattern congruence (the uncentered
pattern correlation of two gridded spatial maps as described by Wilks [2006]) of 0.93. While significant spa-
tial biases compared to observations are found for the western parts of the plains (including eastern Colo-
rado, northwestern Texas, and eastern New Mexico), these differences are potentially related to the
relatively sparse population in these areas (Figure 2b) [Changnon et al., 2009], rather than indicating that
environments favorable to hail events do not occur in these areas. Gridded population and elevation were
considered for their predictive capabilities in the model for this reason, but neither were selected owing to
the probably complexity of the relationship.

Peak frequencies in the model have similar magnitudes to the mean annual observational values, suggest-
ing that this characteristic is well captured (Figure 8a). The northern extension along the Ohio valley to the
east is present in the model climatology, but is displaced slightly southward. However, the model does not
represent the climatological frequency over the southeast. The origins of large hail in this area may be
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Figure 8. (a) Mean annual number of three-hourly periods with large hail events as pre-
dicted by the four parameter index 1979–2012. (b) As for Figure 8a, except the mean annual
occurrence of observed large hail events.
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related to the warning verification process, with hail climatologically less frequent in the area due to a
reduced occurrence of high midlevel lapse rates and a predisposition to greater updraft moisture loading
[Cintineo et al., 2012]. Additionally, a large part of the frequency, particularly further east, may reflect the
occurrence of pulse-type thunderstorms during the summer months rather than the likelihood of organized
storms that the model attempts to identify. These storms are primarily driven by thermodynamic and buoy-
ancy processes rather than vertical wind shear, and are inherently difficult to forecast even on a diurnal
timeframe.

Existing indices for large hail occurrence are difficult to compare to SSP and SHIP. These indices detect hail
above 2 in., rather than 1 in. as in our hail model and use daily, not monthly data. SSP is also derived for all
severe thunderstorm hazards and thus may include environments not favorable to large hail, while SHIP is
calibrated for higher-resolution forecast model data. As a qualitative comparison, Gensini and Ashley [2011]
produced a climatology of an SSP parameter from the NARR reanalysis for the period 1980–2009. The pri-
mary difference between our model and this climatology is the lower frequency (10 as compared to 20–30
environments per year) as well as the shift of the peak region westward and northward. The hail index also
has reduced susceptibility to artificial inflation of favorable environments in southern Texas as described in
section 3. Subjective testing of model performance against alternative climatology was also considered by
calculating the mean annual frequency for the 2007–2010 period (not shown) used by Cintineo et al. [2012].
The distribution was found to be similar both in terms of peak frequency and spatial extent to the radar-
derived climatology, although the peaks around radar observation areas were not replicated, and the model
was biased eastward.

4.3. Seasonal Progression
A key test of the hail climatology is the handling of the progression of the seasonal cycle and its spatial vari-
ability. The spatial distributions of the climatology were divided into spring (MAM) and summer (JJA) peri-
ods (Figure 9). For MAM, the model performed similarly to the performance for the full year, with the
relative RMSE of a similar value (Table 4). There is a slight bias toward the southeast, an overestimation near
the Gulf coast and Mexican border, and deficiencies in frequency over the southeast (Figure 9b). The biases
in southern Texas in the model, while improved relative to those identified using purely CAPE and shear
parameters [e.g., Brooks et al., 2003; Gensini and Ashley, 2011], suggest that initiation remains a problem.
The inclusion of cPrcp, a model-derived estimate of convective initiation produced by the model convective
scheme, appears to be the source of much of this improvement, but given the known issues with
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Figure 9. Seasonal mean number of three-hourly periods with large hail events from the four parameter index 1979–2012 for (a) March, April, May (MAM), (c) June, July, August (JJA),
and observed three-hourly periods with large hail events over the same period for (b) MAM and (d) JJA.
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convective parameterization
schemes [e.g., Allen et al., 2014]
it is unlikely to completely
resolve the issue of whether a
storm is possible in an environ-
ment or not.

During the summer months,
the model correctly shifts the
spatial distribution northwest,
while decreasing the intensity
(Figure 9c). In comparison to
observations, there is a pro-
nounced eastward bias result-
ing from moisture deficiencies
closer to the Rockies, with
lower frequency also found in
the east (Figure 9d). The Colo-
rado high plains, a region
known to have some of the
highest frequencies of hail
occurrence [Changnon et al.,
2009], is also problematic for
the model. This deficiency
likely arises from a low bias in

moisture in the reanalysis as suggested by Gensini et al. [2014], and perhaps hail occurrence in environ-
ments where weaker SRH is offset by mesoscale influences [Wakimoto and Wilson, 1989].

Another way to evaluate the seasonal cycle in the model is to identify at each location the peak month of
climatological frequency in the model and reports (Figure 10). Spatially, the peak month in reports shifts
from the Gulf coast to the southern plains of Oklahoma in April and May, before shifting north and west
during June and reaching the most northern margins of the continent by July. Overall, the model replicates
well this northwest shift of peak month from the early spring in the southeast and to summer over the high
plains. However, the model peaks later than observations in the west. The peak month in the northeast for
the model also differs compared to observations, occurring in June rather than July, while the model also
suggests a peak in Florida in the early spring when in observations this is found in the summer months.
Remarkably, the model appears to identify the hail peak in the southwest over Arizona, associated with the
tail end of the monsoon pattern (August–October) when moisture below 700 hPa is high and promotes
severe thunderstorms [Maddox et al., 1995]. It is also noted that over the area west of the Rocky Mountains
where few observations exist, the model pattern does not reproduce the sporadic observational peaks,
despite the reported losses in this area [Changnon et al., 2009].

5. Interannual Variability and Trends

To this point, we have only evaluated the ability of the hail model to reproduce aspects of the annual cycle
and seasonal distribution of the report climatology. We now test the ability of the hail model to capture
interannual variability. We first use deviance as overall performance measure and use the hail model eval-
uated on climatological environment as a baseline. Figure 11 shows that the deviance of the hail model
applied to interannually varying monthly environmental parameters is about 90% of the baseline. Replacing
one of the parameters in the baseline by its interannually varying values is seen to have positive impact
(deviance is reduced) for all of the parameters except Qmean, indicating that all the parameters except Qmean

have predictive skill on independent data; interannually varying values of Qmean increase the deviance of
the hail model by about 5% with respect to the baseline.

To further evaluate the hail model on interannually varying data, we compute the correlation between the
CONUS total number of hail events reported and predicted by the hail model for each calendar month

25N

30N

35N

40N

45N

50N
(a) Observed Peak Month 1979−2012

130W 115W 100W  85W  70W
25N

30N

35N

40N

45N

50N
(b) Index Peak Month 1979−2012

 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 10. (a) Climatological mean peak month at each grid point of observed large hail
events 1979–2012, and (b) climatological mean peak month at each grid point of the hail
model 1979–2012.
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(Table 5). The correlation of the
baseline model is zero for all
months because it has no
interannual variability. Again,
we replace one of the parame-
ters in the baseline by its inter-
annually varying values to get
an idea of the individual contri-
butions of the environmental
variables. The greatest portion
of variability in the model can
be explained by MLCAPE from
November to April, with cPrcp
also contributing during both
December and January. As the
season approaches the transi-
tional period of spring, SRH
plays a greater role for April

through June, where instability is more commonly available, but strong rotational potential for storms over-
lapping instability is less common. In comparison to the other parameters, Qmean shows poor correlations
for the interannual data for much of the winter and spring.

The correlations between the number of hail events in each of the nine NOAA climate regions [Karl and
Koss, 1984] and that predicted by the model show good skill (Table 3). The strongest interannual perform-
ance is found during the early season (January–May) for each of the south, southeast, central, upper mid-
west, plains, and northeast. These reflect the predominant conditions for producing large hail, involving
storm initiation, instability, and wind shear that produce the hail peak frequency of the Great Plains and
eastward along the progression of the Rocky mountain leeward extratropical cyclone track. The poorest per-
formance is found over the southeast during the summer months corresponding to the buoyancy-driven
processes over that region, and to a lesser extent over the northern plains when initiation becomes less pre-
dictable within reanalysis products. The reduced correlations over the summer months suggest that the
index performance may be related to the annual cycle of synoptic-scale forcing. In some respects, this is
unsurprising, as the index in the fitting procedure is weighted by the observations to represent the most
frequent conditions producing large hail, and reflects the potential value of more adaptive fitting
approaches. We note that while significant, correlations are significantly reduced by the changes in report-
ing over time and space, and thus it is unsurprising that correlations to the more recent period are consider-
ably higher for many regions (not shown).

Artificial trends in observations are a considerable problem in the reported hail climatology as in the tor-
nado climatology [Doswell et al., 2005; Verbout et al., 2006; Brooks and Dotzek, 2007]. Despite this, recent
work using normalized insurance losses and environmental data has suggested increases to both frequency
and variability of severe thunderstorm losses due to changes in the most extreme environments over the
period 1970–2009 [Sander et al., 2013]. Increased variability and clustering of tornado reports and environ-
ments has also been reported [Tippett, 2014, Brooks et al., 2014]. Examining hail events, a strong positive
trend is found in the total annual CONUS occurrence (Figure 12), which is similar to other observed trends
in large hail and hail greater than 3 in. [Doswell et al., 2005; Brooks and Dotzek, 2007]. The evidence for the
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Figure 11. Contribution of the respective parameters to index deviance measured as a ratio
of deviance using the interannually varying parameter to the climatological value, with
spread from the standard deviation of deviance from cross-validated fitting. The value
labeled Clim. Qm indicates the use of interannually varying values for all variables except
Qmean.

Table 3. Pearson Correlations Between the Index and Reported Number of Hail Events Greater Than 1 n. With All Parameters Climatological Except the Listed Which Is Allowed to
Interannually Varya

January February March April May June July August September October November December Annual

Four parameter 0.85 0.66 0.61 0.66 0.44 0.42 20.10 20.10 20.03 0.32 0.63 0.44 0.22
SRH 0.19 0.04 0.07 0.42 0.47 0.39 0.35 0.29 0.01 0.02 0.35 0.22 0.47
MLCAPE 0.82 0.60 0.72 0.52 0.46 0.05 20.19 20.42 20.15 0.39 0.57 0.39 0.16
cPrcp 0.76 0.31 0.34 0.37 20.33 0.04 20.14 20.17 20.01 0.10 0.28 0.50 20.29
Qmean 20.40 20.42 20.42 20.39 20.12 0.12 0.21 0.36 0.20 0.00 0.01 20.05 0.13

aSignificant correlations determined via a t test are in bold.
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Texas panhandle (Figure 2) suggests that this trend is not solely related to population, but may also be
related to the influence of storm chasers and increasing portable telecommunications to simplify reporting
procedures [Tuovinen et al., 2009]. The large influence of these nonphysical changes may therefore mask a
trend in favorable environmental characteristics. Contrasting the trend in reports, changes in modeled hail
events are negligible, which is consistent with the lack of trends found in prior analyses using mean envi-
ronments or SSP over the CONUS domain with NARR and NCEP-NCAR reanalysis data [Brooks and Dotzek,
2007; Kunz et al., 2009; Gensini and Ashley, 2011; Robinson et al., 2013]. This does not imply that regional
trends in environmental conditions are not present or only affect extreme values in the distribution [Sander
et al., 2013]. However, using the modeled frequency of large hail over the CONUS there is no appreciable
trend, which may either be related to the lack of a trend in the NARR reanalysis, or trends of opposite signal
over smaller geographic regions.

To reduce the trend in CONUS observed reports, we apply a correction similar to the inflation adjustment
applied to tornado observations (details of this adjustment can be found at http://www.spc.noaa.gov/wcm/
adj.html) [Tippett et al., 2012]. Observed large hail events are linearly detrended to compare to the model
annual totals, producing the adjusted observations. Absolute values need be carefully considered when
analyzing detrended observations; however, the most noticeable features are the relative trough that
occurs in the late 1980s, values that the observed frequency does not go below until 2007 and 2010. This is
in contrast to the relative peaks that occur in both 2008 and 2011. These variations in frequency are qualita-
tively similar to those observed for the U.S. tornado record [Tippett, 2014], suggesting that detrended large
hail is another potential proxy for supercells in historical climatology. Correlations in annual total between
the observations and the model increase from 0.22 for the raw observational data to 0.57 for the detrended
data. Compared to the adjusted frequency, variability in annual total appears to be well captured by the
model. Discrepancies between the model and observations in peak values may be related to the smoothing
of the adjustment procedure or more localized environment characteristics leading to hail occurrence.
While this adjustment is applicable to the CONUS total, the differences in remaining variance suggested
that further analysis over smaller regions was warranted.

On a regional scale, large variations in the annual total number of hail events are also found. These trends
are difficult to correct using simple detrending, with increases of 4–5 times the number of hail events and
discontinuities (not shown). In comparison, the model based on environmental values produces relatively
stationary mean annual total numbers of hail events for each region, with little to no trend in most regions,
consistent with previous analyses for severe thunderstorms [Gensini and Ashley, 2011; Robinson et al., 2013].
However, small negative trends in the model are identified in the plains, southwest, and the northwest, sug-
gesting potential environmental influences. The presence of such large trends in the hail events makes eval-

uation of the ability of the model
to represent trends in hail occur-
rence difficult and highlights that
caution must be taken when con-
sidering trends over large spatial
areas, and when considering
reports that are subject to nonme-
teorological factors. This suggests

Table 4. Pearson Correlations Between the Index and Reported Number of Hail Events Greater Than 1 in. by U.S. Climate Region and Month for the Period 1979–2012a

January February March April May June July August September October November December Annual

South 0.81 0.77 0.44 0.65 0.41 0.54 0.59 0.47 0.39 0.36 0.69 0.43 0.35
Southeast 0.61 0.29 0.52 0.54 0.40 0.07 0.03 0.32 0.00 0.05 0.51 0.36 0.11
Central 0.77 0.51 0.81 0.72 0.72 0.76 0.24 0.22 0.30 0.43 0.36 0.34 0.70
Upper MW 0.59 0.42 0.79 0.51 0.81 0.48 0.33 0.06 0.31 0.48 0.50 0.00 0.38
Plains 0.05 0.43 0.65 0.55 0.58 0.42 0.25 0.22 0.35 0.63 0.29 0.02 0.06
Northeast 0.61 0.37 0.48 0.79 0.71 0.63 0.35 0.34 0.57 0.16 0.48 0.21 0.70
Southwest 0.13 0.15 0.23 0.00 0.03 0.05 20.20 20.02 20.04 0.46 0.31 20.48
Northwest 20.05 0.07 0.35 0.40 0.08 0.38 0.04 0.41 0.40 0.05
West 0.32 0.06 20.16 0.58 0.26 0.45 0.08 0.17 0.18 0.44 0.10 20.03 20.06

aSignificant correlations determined via a t test are in bold font. Regions and months with less than 34 years with reported hail events during the period are omitted.

Table 5. Root Mean Squared Error and Pattern Congruence (Uncentered Pattern
Correlation [Wilks, 2006]) for the Hail Model as Compared to Observed Large Hail
Events for the Entire Calendar Year and the Respective Seasons

Annual DJF MAM JJA SON

RMSE 1.27 0.22 0.76 0.88 0.35
Pattern conguuence 0.93 0.76 0.91 0.88 0.85
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that alternative data sources,
including other reanalyses,
component ingredients, and
remote observations, are nec-
essary to understand whether
such trends are artifacts of the
data set or an actual climatic
signal.

6. Conclusions

A new empirical model relating
the monthly occurrence of
large hail (greater than 1 in. in
diameter) to monthly aver-
aged, large-scale environment
has been developed. Monthly
hail occurrence is defined to
be the number of three-hourly
periods in a month that pro-
duce one or more reported

occurrences of hail greater than 1 in. in a 1�31� grid box. The model uses convective precipitation, storm
relative helicity between the surface and 3 km, 180 hPa mixed-layer CAPE, and mean-specific humidity in
the lowest 90 hPa of the atmosphere. The model differs in its choice of parameters and their weighting
from existing indices for tornadoes [Tippett et al., 2012, 2014] and indices that were developed using multi-
ple types of severe weather [Brooks et al., 2003; Gensini and Ashley, 2011; Allen and Karoly, 2014]. This model
fits large hail whereas the indices developed using multiple types of severe thunderstorm hazards exam-
ined hail in excess of 2 in.

The model is developed in a regression framework using only climatological annual cycle data. The overall
significance of the climatological relation between large hail events and monthly averaged environment is
established through cross validation and significance testing. The model captures well the annual cycle of
hail occurrence on both a continental and regional basis. The model also performs well in showing the spa-
tial shifts of the climatological distribution of large hail over the year, with some problems in simulating var-
iability, particularly during the summer where underestimation occurs, and during fall where the modeled
hailstone numbers do not decrease sufficiently. The representation of the seasonal cycle is best from the
south to central plains and through the midwest. The model does not capture the westward shift in peak
frequency early enough, which appears to be related to moisture biases in the NARR product.

Application of the model to interannually varying data provides a further test which is independent of the
climatological data used to develop the model. All the environmental variables except Qmean are shown to
explain to interannual variability of hail occurrence on both a continental scale and regional basis. The
annual mean frequency does not display the spatially variable changes seen in reports, confirming that
these trends are not due to these environmental factors. Analyzing this frequency as a CONUS total further
reinforces that there is no trend on a continent-wide basis in the index. Comparing to detrended observed
hail data, the resulting inflation adjusted hail frequency is similar to that of the model.

A fundamental limitation of the model developed here is that monthly averaged environmental values are
clearly removed from the diurnal variability of the component ingredients and parameters most directly
connected to severe convection. However, this work has demonstrated that the extreme environments
associated with large hail do have a significant expression in the monthly mean environment values. Of
course, isolated events would not be expected to be well captured by monthly averages. Despite these limi-
tations, the model appears to agree well with ongoing projects to supplement the observational data using
remote sensing sources such as radar [Cintineo et al., 2012, Figures 9 and 11] and provides a useful tool for
relating severe weather to climate variability and estimating the influence of potential changes to the
climate.
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Figure 12. Variability in annual CONUS total of hail events as compared to the index for the
period 1979–2012. Gray line shows occurrence of large hail events over the respective
regions, while the black line shows the annual frequency as simulated by the four-
parameter hail index. The adjusted observations (dashed gray) have been linearly detrended
(trend shown in dashed black).
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